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Figure 1: Storyline for: “2.0 g SnCl4*5H2O was first dissolved
in 100 mL deionized water. The resulting solution was then
transferred to two 100 mL stainless steel autoclaves and heated
in an oven at 120 degC for 28 h to produce a precipitate,

which was harvested by centrifugation.” (Adapted from [Zhou
et al., 2013]). Black CAPS indicate states or external agent (e.g.,
COS=change-of-state) with RED causal/non-causal relations left
of links (e.g., FORCE). Dotted lines=coreference.

The extraction of causal structure
from scientific text is an important step
in automating deep semantic analyses
of synthesis procedures. Our objec-
tives are (1) to leverage a finite, expres-
sive set of semantic labels as a high-
level representation of event decompo-
sitional causal structure, (2) to extract
subevent semantics with a reliable sig-
nal from surface features of text us-
ing limited annotated data, and (3) to
model discourse structure as subevent
representation of participant interac-
tions for analysis and inference.

Our model of event decomposi-
tional structure is based on the theory
of force dynamics [Croft, 2012, Talmy,
1988] and the claim that the meaning of syntactic form is causal in nature. Events are
decomposed into aspectual, qualitative state, and causal dimensions to model change over
time, representing directly participant interactions. From analyses of subevent structure
[Croft et al., 2016], we have extended our work to entity-centered discourse representations
[Croft et al., 2017, 2020] based on metro map models [van Erp et al., 2014] as in Fig. 1.

The extraction mechanism consists minimally of these steps: identify participants of
each event (e.g., predicate-argument structure), classify causal and non-causal relations
between participants, classify entity qualitative state changes (or no change), and infer entity
coreference links (incl. set/member and part/whole relations). The semantic classification
tasks depend largely on a survey of English language data, cross-linguistic analyses, and
recent experiments using transfer learning that provide evidence of the highly predictive
mapping between surface syntax and causal, force-dynamic meaning.

We examine the utility of this representation to support AI reasoning and causal in-
ference [Peters et al., 2017]. A richer representation will incorporate temporal relations
[Pustejovsky et al., 2003], event modality (e.g. actual, hypothetical) [O’Gorman et al.,
2016], and implicit arguments [O’Gorman et al., 2018]. In future work, we will test our
representation as a bias to build process graphs for material synthesis procedures [Mysore
et al., 2019] and extend construction mappings for greater domain generalizability.
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